Suggested Searches

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the history of our Universe.

Active Mission

Webb studies every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System. Webb launched on Dec. 25th 2021. It does not orbit around the Earth like the Hubble Space Telescope, it orbits the Sun 1.5 million kilometers (1 million miles) away from the Earth at what is called the second Lagrange point or L2. 

Mission Type

Astrophysics

Partners

NASA/ESA/CSA

Launch

Dec 25, 2021

Arrival at L2

Jan 24, 2022

Key Facts

This image is from Webb’s NIRCam instrument, which saw this nebula in the near-infrared.

extending the tantalizing discoveries of the Hubble Space Telescope.

Engineers Prep James Webb Telescope for Integration

So big it has to fold origami-style to fit in the rocket and will unfold like a “Transformer” in space.

Webb Lagrange Points

Webb orbits the Sun 1.5 million kilometers from the Earth. (Hubble orbits 560 kilometers above the Earth.)

NASA’s Webb Sunshield Successfully Unfolds and Tensions in Final Tests

Webb has a 5-layer sunshield that protects the telescope from the infrared radiation of the Sun, Earth, and Moon; like having sun protection of SPF 1 million.

The image shows the galaxy cluster SMACS 0723 as it appeared 4.6 billion years ago

iIt will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang.in the ISS.

Craving an ice cream sundae with a cherry on top? This random alignment of Herbig-Haro 49/50 — a frothy-looking outflow from a nearby protostar — with a multi-hued spiral galaxy may do the trick. This new composite image combining observations from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) provides a high-resolution view to explore the exquisite details of this bubbling activity.

Herbig-Haro objects are outflows produced by jets launched from a nearby, forming star. The outflows, which can extend for light-years, plow into a denser region of material. This creates shock waves, heating the material to higher temperatures. The material then cools by emitting light at visible and infrared wavelengths.

Angled from the upper left corner to the lower right corner of the image is a conical shaped orange-red cloud known at Herbig-Haro 49/50. This feature takes up about three-fourths of the length of this angle. The upper left end of this feature has a translucent, rounded end. At this same location there is background spiral shaped galaxy with a concentrated blue center that fades outwards to blend in with red spiral arms. The conical feature widens slightly from the rounded end at the upper right down to the lower right. Along the way there are additional rounded edges, like edges of a wave, intricate foamy-like details, as well as a clearer view of the black background of space. The black background of space is clearer, speckled with some white stars and smaller, more numerous, fainter white galaxies.
NASA’s James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. Like the wake of a speeding boat, the bow shocks in this image have an arc-like appearance as the fast-moving jet from the young star slams into the surrounding dust and gas. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object with a more distant spiral galaxy in the background. Herbig-Haro 49/50 gives researchers insights into the early phases of the formation of low-mass stars similar to our own Sun. In this Webb image, blue represents light at 2.0-microns (F200W), cyan represents light at 3.3-microns (F335M), green is 4.4-microns (F444W), orange is 4.7-microns (F470N), and red is 7.7-microns (F770W).
NASA, ESA, CSA, STScI

Latest News

Webb's latest news releases in reverse chronological order. Search and sort the news feed with the controls immediately below.

NASA’s Webb Telescope Unmasks True Nature of the Cosmic Tornado

Craving an ice cream sundae with a cherry on top? This random alignment of Herbig-Haro 49/50 — a frothy-looking outflow from a nearby protostar — with a multi-hued spiral galaxy may do the trick. This new composite image combining observations…

Article
NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide

NASA’s James Webb Space Telescope has captured direct images of multiple gas giant planets within an iconic planetary system. HR 8799, a young system 130 light-years away, has long been a key target for planet formation studies. The observations indicate…

Article
NASA’s Webb Peers Deeper into Mysterious Flame Nebula

The Flame Nebula, located about 1,400 light-years away from Earth, is a hotbed of star formation less than 1 million years old. Within the Flame Nebula, there are objects so small that their cores will never be able to fuse…

Article
NASA Webb Wows With Incredible Detail in Actively Forming Star System

High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and structure in Lynds 483 (L483). Two actively forming stars are responsible for the shimmering ejections of gas and dust that gleam in orange, blue, and…

Article


Latest 2025 Images

The image below is a SLIDESHOW. Hover over the image to see the image title and controls. Click the image to go to a detail page with more info and the ability to download the image at various resolutions (click the downward arrow icon in lower right corner).

NASA's Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide

Keep Exploring

Discover More Topics From NASA