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Abstract

These are notes for my talk given in Fall 2007 in Barry Mazur’s class “Theory of Schemes”.
My goal is to explain Hironaka’s example of a complete but non-projective variety ([Hir60]). I will
present Hironaka’s construction as in [Har77] and [Šaf94] but I will give more details and try to explain
everything precisely. Since Hironaka’s construction involves blow-ups I will give a short survey on this
important tool concentrating only on those properties we need to understand Hironaka’s construction.
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1. Notations
The category of schemes is denoted by Sch, its comma category over a scheme X is denoted by Sch/X.
We fix an algebraically closed field k. A variety over k is an integral algebraic scheme over k. The
category of varieties over k is the full subcategory of Sch/k consisting of varieties over k and is denoted
by Var/k.

2. Blow-ups
The reader who is familiar with blow-ups should directly go to section 2.4 or section 3.
A blow-up transforms a subscheme Y ↪→ X into a morphism BlYX

π−→ X having certain nice properties
with respect to Y . There are different approaches to define and understand blow-ups and each has its
advantages: One can describe blow-ups in an abstract way using a universal property, one can describe
them as the closure of the graph of a certain geometrically motivated morphism, or (in nice situations),
one can describe blow-ups very concretely with equations. The advantage of the abstract approach is
that one can immediately understand the nature of blow-ups. However, as any other construction defined
by universal properties, its existence has to be proven. This is one reason why the second (geometric)
approach becomes important because it can be shown that it satisfies the universal property and proves
in this way proves the existence. The equational approach works if both X and Y are regular and is of
course most useful for concrete computations.
In the following sections I will review the abstract and the equational approach. This should provide
enough information for understanding Hironaka’s construction. Thorough discussions of all this can be
found in [EH00], [Šaf94] and [Har77].
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2.1. Abstract context of blow-ups
Blow-ups are a special case of an abstract concept that I simply call transform. Suppose we are given
a category P over Sch fibered into closed subschemes satisfying a given property P. I will call such a
category P-subscheme category and call its object over a scheme X the P-subschemes of X.
Suppose that the property P is an “interesting” property that is not satisfied by all subschemes. Then
we would like to have some kind of universal transform that transforms a given subscheme Y ↪→ X into a
P-subscheme preserving all information about X \Y , so that the transform only affects Y . The following
definition gives one formalization of these ideas.

2.1 Definition. A P-transform of a closed subscheme Y ↪→ X is a morphism X̃
PY/X−−−−→ X satisfying the

following properties:
(i) P−1

Y/X(Y ) ↪→ P−1
Y/X(X) = X̃ is a P-subscheme of X̃

(ii) P−1
Y/X(X \ Y ) ∼= X \ Y

(iii) PY/X is universal among morphisms satisfying the first two properties, i.e. if X̃ ′
P′Y/X−−−−→ X is another

morphism satisfying 1 and 2 then there exists a unique morphism X̃ ′ → X̃ making the following
diagram commutative

X̃ ′
∃! //_______

P′Y/X   A
AA

AA
AA

X̃

PY/X��~~
~~

~~
~

X

The closed subscheme P−1
Y/X(Y ) ↪→ X̃ is called the exceptional subscheme of the P-transform PY/X be-

cause it is the only set where PY/X is not necessarily an isomorphism. The universality of a P-transform
ensures that it is unique up to isomorphism and therefore we can talk about the P-transform of a given
closed subscheme Y ↪→ X. However, as mentioned above, it is not clear that the P-transform exists for
a given closed subscheme. This has to be checked for each given property P.

If we suppose that the P-transform exists for any closed subscheme then it is important to know how it
behaves under base change: If Y ↪→ X is a closed subscheme and X ′

f−→ X is a morphism then we get a
closed subscheme f−1(Y ) ↪→ X ′ and the obvious question is if and how the P-transform of f−1(Y ) ↪→ X ′

can be obtained from the P-transform of Y ↪→ X. One particular way will be given for blow-ups and
therefore I define the following notion.

2.2 Definition. Let P be a subscheme category for which all P-transforms exist. We say that P-
transforms are normal if for any closed subscheme Y ↪→ X and any morphism X ′

f−→ X the P-transform
of f−1(Y ) ↪→ X ′ is given as follows

p−1
2 (X ′ \ f−1(Y ))

_�

��

Pf−1(Y )/X′

��@
@@

@@
@@

@@
@@

@@
@@

@@

X̃ ×X X ′
p2 //

��

X ′

f

��

f−1(Y )? _oo

��
X̃ PY/X

// X Y?
_oo

The following Corollary collects some results on normal P-transforms and shows that these transforms
are very powerful and have good properties.

2.3 Corollary. Suppose that P-transforms are normal. Let Y ↪→ X be a closed subscheme with P-
transform PY/X : X̃ → X.

(i) The inverse image P−1
Y/X(X \ Y ) is dense in X̃.

(ii) If Z ↪→ X is another closed subscheme such that Z is not contained in Y then the P-transform
of Z ↪→ X is given by the closure of P−1

Y/X(Z \ (Z ∩ Y )) in X̃. This preimage is called the proper

transform of Z with respect to PY/X . The full preimage P−1
Y/X(Z) ↪→ X̃ is called the total transform.
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(iii) If X ′ ↪→ X is an open subscheme then PX′∩Y/X′ ∼= P−1
Y/X(X ′) → X ′ and this isomorphism is

unique.
(iv) If {Uλ} is an open cover of X and X̃ π−→ X is a morphism such that π−1(U) ∼= PU∩Y/U over X then

π ∼= PY/X .

The fourth statement is very important because it shows that normal P-transforms are determined locally.
In particular, we have to prove their existence only for closed subschemes of affine schemes.

2.2. Abstract characterization of blow-ups
Now, I will finally define blow-ups as a particular P-transform. For this, I first have to choose the
subscheme category.

2.4 Definition. A subscheme Y ↪→ X is called a Cartier subscheme if it is locally the zero locus of
a single nonzerodivisor, i.e. for all x ∈ X there is an affine neighborhood U = Spec(A) such that
Y ∩ U = V (f) ⊂ U for some nonzerodivisor f ∈ A.

2.5 Definition. Let P be the subscheme category of Cartier subschemes. Then the P-transform of a
closed subscheme Y ↪→ X is also called the blow-up of X along Y and we write BlY/X : BlYX → X for
this P-transform.

This immediately explains the name “blow-up”: a subscheme Y ↪→ X is replaced by the Cartier subscheme
Bl−1
Y/X(Y ) ↪→ BlYX which is by definition a hypersurface, i.e. Y is blown-up to a hypersurface. The

exceptional subscheme Bl−1
Y/X(Y ) ⊆ BlYX is then also called the exceptional divisor.

2.6 Proposition. Blow-ups exist and are normal. In particular, all statements in Corollary 2.3 hold for
blow-ups.

Proof. The existence and normality of blow-ups are proven in [EH00], Propositions IV-18 and IV-21.

The abstract characterization of blow-ups should provide a good understanding of the context and prop-
erties of blow-ups. For the discussion of Hironaka’s construction we need the concrete equational char-
acterization of blow-ups. This characterization works only if Y and X are both regular schemes but
this will be satisfied for our applications. I will discuss this equational characterization in the next two
sections beginning with a review on local systems.

2.3. Local systems

Recall that a morphism (Y,OY )
(f,ϕ)−−−→ (X,OX) of schemes induces for every y ∈ Y a natural morphism

ϕ]y : OX,f(y) → OY,y given by [U, s] 7→ [f−1(U), ϕ(U)(s)]. In this way OY,y becomes naturally an OX,f(y)-
module. In particular, if Y ↪→ X is a closed subscheme then OY,y becomes naturally an OX,y-module for
every y ∈ Y . This observation is used in the following definition.

2.7 Definition. Let X be a scheme and Y ↪→ X be a closed subscheme. A local system of equations for Y
in a point y ∈ Y consists of germs f1 . . . , fr ∈ OX,y such that mY,y = (f1,y . . . , fr,y)OY,y. If f1,y, . . . , fr,y
form a basis of the OY,y/mY,y-vector space mY,y/m

2
Y,y then it is called a local system of parameters for

Y at y.

By Nakayama’s Lemma, every local system of parameters is a local system of equations but the converse
does not hold in general. To understand the geometric motivation for this definition, one has to remember
that the maximal ideal mY,y consists precisely of those regular function on Y which are defined in a
neighborhood of y and vanish at this point. The existence of a regular system of equations in y shows
that all functions on Y vanishing in y are already determined by functions on X vanishing in y. If this
system is moreover a system of parameters, then all these functions additionally vanish with different
tangent directions in y.

2.8 Theorem. Let X ∈ Var(k) and let Y ↪→ X be a closed subvariety. Then around each closed point
y ∈ Y which is regular in both X and Y there exists a local system of parameters of Y in y consisting of
r = codimXY functions. If both X and Y are regular then around each point y ∈ U there exists functions
f1, . . . , fr ∈ OX(U) such that f1,x, . . . , fr,x is a local system of parameters for Y in each x ∈ U ∩ Y .

Proof. See [Šaf94], p. 71.
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So, if both X and Y are regular then Y can locally defined by functions on X which vanish on Y with
different tangent directions.

2.9 Example.
(i) Let X ⊂ A2 be a smooth curve. Then each local ring at a closed point is a discrete valuation ring
which admits a uniformizing parameter defining a local system of parameters.
(ii) Let X = V (T2(T2 − T 2

1 ), T3) ⊂ A3. But around the origin (0, 0, 0) ∈ X we always have functions
vanishing on the line and on the parabola and all these functions vanish with the same tangent direction
in the origin. Hence, there is no local system of parameters around the origin.

2.4. Equational characterization of blow-ups
Let X ∈ Var(k) be a regular n-dimensional affine variety and let Y ↪→ X be a closed regular subvariety.
Since blow-ups are determined locally, it is enough to assume that we have a single local system of
parameters u1, . . . , ur describing Y in X and r = codimXY .
Let BlYX be the closed subset of X × Pr−1 defined by the equations

tiuj = tjui ⊆ X × Pr−1 for i, j = 1, . . . , r,

where the ti are the homogeneous coordinates of Pr−1. The projection from X×Pr−1 onto the first factor
then defines a morphism BlYX

π−→ X.

2.10 Proposition. The morphism BlYX
π−→ X is the blow-up of X along Y .

Proof. See [EH00], Exercise IV-26.

2.11 Proposition. The blowup BlYX
π−→ X has the following properties:

(i) π−1(Y ) = Y × Pr−1 and π−1(y) ∼= Pr−1 for each y ∈ Y .
(ii) BlYX \ π−1(Y ) π−→ X \ Y is an isomorphism.
(iii) The construction of BlYX does not depend on the choice of the local system of parameters for Y .
(iv) BlYX is irreducible, regular and of dimension n.

Proof. The first statement can be derived from the equations. The second statement is obvious and the
third statement is due to the fact that the blow-up is unique up to isomorphism. For the last statement,
see [Šaf94].

To globalize this construction to blow-ups of a regular variety X ∈ Var(k) along a regular closed subvariety
Y , we choose an affine cover Uα of Y such that Y is on each Uα defined by a local system of parameters
uα,1, . . . , uα,r. Then we blow up Uα along Y ∩ Uα and get a family of morphisms BlY ∩Uα

πα−−→ Uα. On
each intersection Uα ∩ Uβ we have two local systems of parameters and according to the uniqueness of
the local blow-up construction from above there exists a unique isomorphism

π−1
α (Uα ∩ Uβ)

ϕαβ−→∼= π−1
β (Uα ∩ Uβ)

We can glue the BlY ∩Uα along these isomorphisms and get a variety BlYX and by gluing the πα we
get a morphism BlYX

π−→ X. This morphism is then the blow-up of X along Y . Since the local blow-
up construction is unique and independent of the local systems of parameters, this construction is also
independent of the chosen local systems of parameters.

3. Hironaka’s example
Hironaka varieties are examples of non-singular and complete but non-projective varieties. It was proven
that 2-dimensional non-singular complete varieties are projective (see [Šaf94]) and therefore Hironaka
varieties are important counter examples showing that this is already in dimension 3 not true.

3.1. Hironaka varieties
Hironaka has not given only one counter example but a whole class of counter examples. Therefore I
introduced the name Hironaka variety for his construction. These varieties are constructed as follows.
Let X ∈ Var(k) be a regular projective threefold over k containing two regular rational curves C,D
intersecting transversally in two points P,Q. The objects (k,X,C,D, P,Q) are the “variables” in the
construction producing the different counter examples. To show that at least one such tuple exists, we
can take k = C, X = P3

C = ProjC[T0, T1, T2, T3], C = V (T2, T3) and D = V (T 2
0 − T 2

1 + T0T2, T3).
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X

D

C

P

Q

Figure 1: Initial setup

Now, consider the following two sequences of blow-ups

X1 = Bl(D\P )′
(
BlC\P (X \ P )

) π2−→ BlC\P (X \ P ) π1−→ X \ P

X2 = Bl(C\Q)′
(
BlD\Q(X \Q)

) σ2−→ BlD\Q(X \Q) σ1−→ X \Q,

where (D \ P )′ is the proper transform of D \ P in BlC\P (X \ P ) and (C \Q)′ is the proper transform
of C \ Q in BlD\Q(X \ Q). Let π = π2π1, σ = σ2σ1 and let U = X \ {P,Q} be the curve obtained by
removing the two intersection points of C and D from X.
Before looking at the result in detail we first try to figure out what happens to the curve U after blowing
up, i.e. we want to compare π−1(U) and σ−1(U). Note that the curve U is disconnected and therefore,
as indicated in figure 2, we can find an affine cover Uα of U in X such that each Uα intersects U in only
one of its six components.
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D \ {P,Q}

X \ {P,Q}

C \ {P,Q}

Uα1

Uα2

Figure 2: Isolating the components of U

But then, as blow-ups are determined locally and are isomorphisms away from the exceptional divisor,
we immediately see that on U it does not matter if we blow up first along C and then along D or first
along D and then along C. In other words, because we removed the intersection points of the curves
the local blow-ups do not interfere anymore and so we do not have to care about the order. Therefore
π−1(U) and σ−1(U) are isomorphic and we can glue X1 and X2 along this isomorphism and obtain a

variety H. By gluing π and σ we also get a morphism H
f−→ X. This morphism is called the Hironaka

variety obtained from the data (k,X,C,D, P,Q). The construction is illustrated on the next page.
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σ2
π2

σ1π1

BlC\P (X \ P )

X \ P

i2

P

D \Q

Q

D \ P

i1

f

H

BlD\Q(X \Q)

X \Q

C \QC \ P

π−1
1 (D \ P ) = (D \ P )′ ∪ π−1

1 (Q)

j2j1

X

σ−1
1 (C \Q) = (C \Q)′ ∪ σ−1

1 (P )

Bl(C\Q)′(BlD\Q(X \Q)
Bl(D\P )′(BlC\P (X \ P )

Figure 3: Construction of a Hironaka variety
(note that I have used some so far unproven but “geometrically

obvious” assumptions in the pictures, see section 3.3)
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3.2. Some notations and observations concerning Hironaka varieties
By the properties of our initial setup and by the properties of blow-ups, H is a regular variety over k.
We denote the exceptional hypersurface of the blow-up π1 resp. σ1 by E1 resp. F1. In the picture, this
is the black surface containing one blue resp. red line in the first step. The exceptional hypersurfaces of
the blow-up π2 resp. σ2 is denoted by E2 resp. F2. In the picture, this is the blue resp. red surface in
the second step.
Our gluing process glues the surfaces E1 and F2 resp. E2 and F1 to a hypersurface S1 resp. S2 in H. In
the picture, this is the red resp. blue surface in H. We denote the hypersurface S1 ∪ S2 by S. We then
have morphisms f1 := f |S1 : S1 → C and f2 := f |S2 : S2 → D.

3.3. Non-projectivity of Hironaka varieties
The proof of the non-projectivity of a Hironaka variety is based on a deduction of a statement in its
intersection theory which cannot hold for projective varieties. In detail, we construct Weil divisors on
the surface S which have positive degree but add up to zero. This would not be possible if the variety is
projective. The key fact for deriving this contradiction is more or less simply the statement that figure 3
is correct (this is the unproven assumption I was talking about). The following Proposition makes precise
what I mean.

3.1 Proposition. Let H
f−→ X be a Hironaka variety with data as above. Then f−1(P ) decomposes into

two distinct projective lines LQ and L′Q both contained in S1. The same holds for f−1(Q).

We prove this Proposition in two steps. First we prove a statement that I have also assumed in drawing
the first step of the picture.

3.2 Lemma.
1. The total transform π−1

1 (D \ P ) of D \ P decomposes into two irreducible components

π−1
1 (D \ P ) = (D \ P )′ ∪ π−1

1 (Q),

where (D \ P )′ is the proper transform of D \ P .
2. (D \ P )′ is isomorphic to the curve D \ P and π−1

1 (Q) is a projective line.
3. The two components intersect transversally in exactly one point Q′.

Proof.
1. This is obvious since (D \ P )′ = π−1

1 (D \ {P,Q}). The irreducibility can be derived from the next
statement.
2. That π−1

1 (Q) is a projective line follows simply from the properties of blow-ups. That (D \ P )′ is
isomorphic to D \ P is also obvious since (D \ P )′ is the closure of π−1

1 (D \ {P,Q}) in the blow-up. But
π−1

1 (D \ {P,Q}) is isomorphic to D \ {P,Q} and the closure just “adds the one missing point on the
curve”.
3. We can restrict to an affine neighborhood around π−1(Q) and as the two curves C,D intersect
transversally we can assume the following situation: X = A3, C = {x = y = 0} is the z-axis, D = {y =
z = 0} is the x-axis and Q is the origin. Let BlYX

π1−→ X be the blow-up of X along C. We want to
show that the proper transform of D in BlYX intersects E = π−1

1 (C) transversally in one point.
The blow-up BlYX ⊂ A3 × P1 is given by the equation t1y = t2x, where t1, t2 are the homogeneous
coordinates on P1. We can cover the blow-up BlYX ⊂ A3×P1 with two coordinate charts U1 = {t1 6= 0}
and U2 = {t2 6= 0}. On U1, we can set t1 = 1 and BlCX ∩ U1 is then given by y = t2x. Similarly,
BlCX ∩ U2 is given by x = t1y. The total transform of D in BlCX given by the equation y = z = 0 and
on the open subsets U1,U2 we get

BlCX ∩ U1 ∩ π−1(D) = {y = t2x, y = z = 0} = {t2x = y = z = 0}
= {x = y = z = 0} ∪ {y = z = t2 = 0, x 6= 0} = D′

BlCX ∩ U2 ∩ π−1(D) = {x = t1y, y = z = 0} = {x = y = z = 0} = π−1(Q)

We see that the total transform of D decomposes into the line lQ and into the proper transform D′ ∼= D.
Moreover, both components intersect transversally in the origin.

Similar statements hold of course “on the opposite side”, i.e for Q replaced by P and π1 replaced by σ1.
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Proof of Proposition 3.1. Obviously, f−1(Q) decomposes into the two projective lines L′Q = π−1
2 (Q′) and

LQ = π−1
1 (Q)′, where Q′ is the unique intersection point from Lemma 3.2 and π−1

1 (Q)′ is the proper
transform of π−1

1 (Q)′ under the blow-up π2. The line LQ is obviously contained in S1.
To show that L′Q is contained in S1, one can use the Lemma above and a similar1 simplified situation as
in its proof.

Now, let H
f−→ X be a Hironaka variety obtained by the data (k,X,C,D,P,Q). Choose two more points

A ∈ C \ {P,Q} and B ∈ D \ {P,Q}. Since the curves C,D are rational curves, any two points on them
are linearly equivalent. Linear equivalence is preserved under pullbacks of divisors and therefore we get
the following linear equivalences (we keep track of the variety where the equivalence holds using an index
at the tilde):

A ∼C Q =⇒ f−1
1 (A) ∼S1 f

−1
1 (Q) = LQ + L′Q

B ∼D P =⇒ f−1
2 (B) ∼S2 f

−1
2 (P ) = LP + L′P .

Using the pushforwards of cycles under the inclusions S1
j1
↪→ S and S2

j2
↪→ S, we get equivalences on S:

I : f−1(A) ∼S f−1(Q) = LQ + L′Q

II : f−1(B) ∼S f−1(P ) = LP + L′P .

B and Q lie on D and therefore, as D is rational, we have

III : B ∼D Q⇒ f−1
2 (B) ∼S2 f

−1
2 (Q)⇒ f−1(B) ∼S L′Q.

Similarly we get
IV : f−1(A) ∼S L′P .

Combining all these equivalences, we get the following equivalence

f−1(A) + f−1(B) ∼S f−1(A) + f−1(B)⇒ LQ + L′Q + LP + L′P ∼S L′Q + L′P
⇒ LQ + LP ∼S 0.

Now, suppose that H would be projective. Then the both lines LQ and LP would have a positive degree.
The degree is a Z-linear map on the cycles and therefore the sum LQ and LP would also have a positive
degree. But on a projective variety the trivial cycle has degree 0 contradicting the linear equivalence
above.

3.4. Completeness of Hironaka varieties

It remains to show that Hironaka varieties are complete. So, let H
f−→ X be a Hironaka variety as above.

We have to show that for any variety Z the projection H × Z p−→ Z is closed. The projection p can be
factored as p = q ◦ (f × id) where X × Z q−→ Z is the projection. Since X is projective by assumption, q
is a closed map and therefore it suffices to show that f × id is closed. X can be covered by the two open
sets U1 = X \P and U2 = X \Q and as closed is a local property, it suffices to show that the restrictions

f × id : (f × id)−1(Ui × Z)→ Ui × Z

are closed. The map f is over Ui a composition of blow-ups and it suffices to show that blow-ups are
closed. Since blow-ups are local, we can check this on an affine open on which our blow-up is defined by
the local construction. But such a blow-up is simply a projection U × Pr−1 → U which is closed as Pr−1

is complete.
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